Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Distributed Value Function Approximation for Collaborative Multi-Agent Reinforcement Learning (2006.10443v3)

Published 18 Jun 2020 in cs.LG, cs.DC, cs.SY, eess.SY, and stat.ML

Abstract: In this paper we propose several novel distributed gradient-based temporal difference algorithms for multi-agent off-policy learning of linear approximation of the value function in Markov decision processes with strict information structure constraints, limiting inter-agent communications to small neighborhoods. The algorithms are composed of: 1) local parameter updates based on single-agent off-policy gradient temporal difference learning algorithms, including eligibility traces with state dependent parameters, and 2) linear stochastic time varying consensus schemes, represented by directed graphs. The proposed algorithms differ by their form, definition of eligibility traces, selection of time scales and the way of incorporating consensus iterations. The main contribution of the paper is a convergence analysis based on the general properties of the underlying Feller-Markov processes and the stochastic time varying consensus model. We prove, under general assumptions, that the parameter estimates generated by all the proposed algorithms weakly converge to the corresponding ordinary differential equations (ODE) with precisely defined invariant sets. It is demonstrated how the adopted methodology can be applied to temporal-difference algorithms under weaker information structure constraints. The variance reduction effect of the proposed algorithms is demonstrated by formulating and analyzing an asymptotic stochastic differential equation. Specific guidelines for communication network design are provided. The algorithms' superior properties are illustrated by characteristic simulation results.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.