Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

When OT meets MoM: Robust estimation of Wasserstein Distance (2006.10325v3)

Published 18 Jun 2020 in stat.ML and cs.LG

Abstract: Issued from Optimal Transport, the Wasserstein distance has gained importance in Machine Learning due to its appealing geometrical properties and the increasing availability of efficient approximations. In this work, we consider the problem of estimating the Wasserstein distance between two probability distributions when observations are polluted by outliers. To that end, we investigate how to leverage Medians of Means (MoM) estimators to robustify the estimation of Wasserstein distance. Exploiting the dual Kantorovitch formulation of Wasserstein distance, we introduce and discuss novel MoM-based robust estimators whose consistency is studied under a data contamination model and for which convergence rates are provided. These MoM estimators enable to make Wasserstein Generative Adversarial Network (WGAN) robust to outliers, as witnessed by an empirical study on two benchmarks CIFAR10 and Fashion MNIST. Eventually, we discuss how to combine MoM with the entropy-regularized approximation of the Wasserstein distance and propose a simple MoM-based re-weighting scheme that could be used in conjunction with the Sinkhorn algorithm.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.