Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A Tutorial on VAEs: From Bayes' Rule to Lossless Compression (2006.10273v2)

Published 18 Jun 2020 in cs.LG and stat.ML

Abstract: The Variational Auto-Encoder (VAE) is a simple, efficient, and popular deep maximum likelihood model. Though usage of VAEs is widespread, the derivation of the VAE is not as widely understood. In this tutorial, we will provide an overview of the VAE and a tour through various derivations and interpretations of the VAE objective. From a probabilistic standpoint, we will examine the VAE through the lens of Bayes' Rule, importance sampling, and the change-of-variables formula. From an information theoretic standpoint, we will examine the VAE through the lens of lossless compression and transmission through a noisy channel. We will then identify two common misconceptions over the VAE formulation and their practical consequences. Finally, we will visualize the capabilities and limitations of VAEs using a code example (with an accompanying Jupyter notebook) on toy 2D data.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)