Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 46 tok/s Pro
Gemini 2.5 Flash 148 tok/s Pro
Kimi K2 170 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Sequential Graph Convolutional Network for Active Learning (2006.10219v3)

Published 18 Jun 2020 in cs.CV and cs.LG

Abstract: We propose a novel pool-based Active Learning framework constructed on a sequential Graph Convolution Network (GCN). Each image's feature from a pool of data represents a node in the graph and the edges encode their similarities. With a small number of randomly sampled images as seed labelled examples, we learn the parameters of the graph to distinguish labelled vs unlabelled nodes by minimising the binary cross-entropy loss. GCN performs message-passing operations between the nodes, and hence, induces similar representations of the strongly associated nodes. We exploit these characteristics of GCN to select the unlabelled examples which are sufficiently different from labelled ones. To this end, we utilise the graph node embeddings and their confidence scores and adapt sampling techniques such as CoreSet and uncertainty-based methods to query the nodes. We flip the label of newly queried nodes from unlabelled to labelled, re-train the learner to optimise the downstream task and the graph to minimise its modified objective. We continue this process within a fixed budget. We evaluate our method on 6 different benchmarks:4 real image classification, 1 depth-based hand pose estimation and 1 synthetic RGB image classification datasets. Our method outperforms several competitive baselines such as VAAL, Learning Loss, CoreSet and attains the new state-of-the-art performance on multiple applications The implementations can be found here: https://github.com/razvancaramalau/Sequential-GCN-for-Active-Learning

Citations (100)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com