Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

UV-Net: Learning from Boundary Representations (2006.10211v2)

Published 18 Jun 2020 in cs.CV and cs.LG

Abstract: We introduce UV-Net, a novel neural network architecture and representation designed to operate directly on Boundary representation (B-rep) data from 3D CAD models. The B-rep format is widely used in the design, simulation and manufacturing industries to enable sophisticated and precise CAD modeling operations. However, B-rep data presents some unique challenges when used with modern machine learning due to the complexity of the data structure and its support for both continuous non-Euclidean geometric entities and discrete topological entities. In this paper, we propose a unified representation for B-rep data that exploits the U and V parameter domain of curves and surfaces to model geometry, and an adjacency graph to explicitly model topology. This leads to a unique and efficient network architecture, UV-Net, that couples image and graph convolutional neural networks in a compute and memory-efficient manner. To aid in future research we present a synthetic labelled B-rep dataset, SolidLetters, derived from human designed fonts with variations in both geometry and topology. Finally we demonstrate that UV-Net can generalize to supervised and unsupervised tasks on five datasets, while outperforming alternate 3D shape representations such as point clouds, voxels, and meshes.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.