Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Playing Unique Games on Certified Small-Set Expanders (2006.09969v3)

Published 17 Jun 2020 in cs.CC

Abstract: We give an algorithm for solving unique games (UG) instances whenever low-degree sum-of-squares proofs certify good bounds on the small-set-expansion of the underlying constraint graph via a hypercontractive inequality. Our algorithm is in fact more versatile, and succeeds even when the constraint graph is not a small-set expander as long as the structure of non-expanding small sets is (informally speaking) "characterized" by a low-degree sum-of-squares proof. Our results are obtained by rounding \emph{low-entropy} solutions -- measured via a new global potential function -- to sum-of-squares (SoS) semidefinite programs. This technique adds to the (currently short) list of general tools for analyzing SoS relaxations for \emph{worst-case} optimization problems. As corollaries, we obtain the first polynomial-time algorithms for solving any UG instance where the constraint graph is either the \emph{noisy hypercube}, the \emph{short code} or the \emph{Johnson} graph. The prior best algorithm for such instances was the eigenvalue enumeration algorithm of Arora, Barak, and Steurer (2010) which requires quasi-polynomial time for the noisy hypercube and nearly-exponential time for the short code and Johnson graphs. All of our results achieve an approximation of $1-\epsilon$ vs $\delta$ for UG instances, where $\epsilon>0$ and $\delta > 0$ depend on the expansion parameters of the graph but are independent of the alphabet size.

Citations (18)

Summary

We haven't generated a summary for this paper yet.