Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Neural Ordinary Differential Equation Control of Dynamics on Graphs (2006.09773v5)

Published 17 Jun 2020 in cs.LG, cs.SI, and stat.ML

Abstract: We study the ability of neural networks to calculate feedback control signals that steer trajectories of continuous time non-linear dynamical systems on graphs, which we represent with neural ordinary differential equations (neural ODEs). To do so, we present a neural-ODE control (NODEC) framework and find that it can learn feedback control signals that drive graph dynamical systems into desired target states. While we use loss functions that do not constrain the control energy, our results show, in accordance with related work, that NODEC produces low energy control signals. Finally, we evaluate the performance and versatility of NODEC against well-known feedback controllers and deep reinforcement learning. We use NODEC to generate feedback controls for systems of more than one thousand coupled, non-linear ODEs that represent epidemic processes and coupled oscillators.

Citations (36)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.