A Concentration of Measure and Random Matrix Approach to Large Dimensional Robust Statistics (2006.09728v2)
Abstract: This article studies the \emph{robust covariance matrix estimation} of a data collection $X = (x_1,\ldots,x_n)$ with $x_i = \sqrt \tau_i z_i + m$, where $z_i \in \mathbb Rp$ is a \textit{concentrated vector} (e.g., an elliptical random vector), $m\in \mathbb Rp$ a deterministic signal and $\tau_i\in \mathbb R$ a scalar perturbation of possibly large amplitude, under the assumption where both $n$ and $p$ are large. This estimator is defined as the fixed point of a function which we show is contracting for a so-called \textit{stable semi-metric}. We exploit this semi-metric along with concentration of measure arguments to prove the existence and uniqueness of the robust estimator as well as evaluate its limiting spectral distribution.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.