Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A Concentration of Measure and Random Matrix Approach to Large Dimensional Robust Statistics (2006.09728v2)

Published 17 Jun 2020 in math.PR and stat.ML

Abstract: This article studies the \emph{robust covariance matrix estimation} of a data collection $X = (x_1,\ldots,x_n)$ with $x_i = \sqrt \tau_i z_i + m$, where $z_i \in \mathbb Rp$ is a \textit{concentrated vector} (e.g., an elliptical random vector), $m\in \mathbb Rp$ a deterministic signal and $\tau_i\in \mathbb R$ a scalar perturbation of possibly large amplitude, under the assumption where both $n$ and $p$ are large. This estimator is defined as the fixed point of a function which we show is contracting for a so-called \textit{stable semi-metric}. We exploit this semi-metric along with concentration of measure arguments to prove the existence and uniqueness of the robust estimator as well as evaluate its limiting spectral distribution.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.