Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Leveraging the Power of Prediction: Predictive Service Placement for Latency-Sensitive Mobile Edge Computing (2006.09710v1)

Published 17 Jun 2020 in cs.NI, cs.DC, and cs.SI

Abstract: Mobile edge computing (MEC) is emerging to support delay-sensitive 5G applications at the edge of mobile networks. When a user moves erratically among multiple MEC nodes, the challenge of how to dynamically migrate its service to maintain service performance (i.e., user-perceived latency) arises. However, frequent service migration can significantly increase operational cost, incurring the conflict between improving performance and reducing cost. To address these mis-aligned objectives, this paper studies the performance optimization of mobile edge service placement under the constraint of long-term cost budget. It is challenging because the budget involves the future uncertain information (e.g., user mobility). To overcome this difficulty, we devote to leveraging the power of prediction and advocate predictive service placement with predicted near-future information. By using two-timescale Lyapunov optimization method, we propose a T-slot predictive service placement (PSP) algorithm to incorporate the prediction of user mobility based on a frame-based design. We characterize the performance bounds of PSP in terms of cost-delay trade-off theoretically. Furthermore, we propose a new weight adjustment scheme for the queue in each frame named PSP-WU to exploit the historical queue information, which greatly reduces the length of queue while improving the quality of user-perceived latency. Rigorous theoretical analysis and extensive evaluations using realistic data traces demonstrate the superior performance of the proposed predictive schemes.

Citations (48)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.