Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

FrostNet: Towards Quantization-Aware Network Architecture Search (2006.09679v4)

Published 17 Jun 2020 in cs.LG, cs.CV, and stat.ML

Abstract: INT8 quantization has become one of the standard techniques for deploying convolutional neural networks (CNNs) on edge devices to reduce the memory and computational resource usages. By analyzing quantized performances of existing mobile-target network architectures, we can raise an issue regarding the importance of network architecture for optimal INT8 quantization. In this paper, we present a new network architecture search (NAS) procedure to find a network that guarantees both full-precision (FLOAT32) and quantized (INT8) performances. We first propose critical but straightforward optimization method which enables quantization-aware training (QAT) : floating-point statistic assisting (StatAssist) and stochastic gradient boosting (GradBoost). By integrating the gradient-based NAS with StatAssist and GradBoost, we discovered a quantization-efficient network building block, Frost bottleneck. Furthermore, we used Frost bottleneck as the building block for hardware-aware NAS to obtain quantization-efficient networks, FrostNets, which show improved quantization performances compared to other mobile-target networks while maintaining competitive FLOAT32 performance. Our FrostNets achieve higher recognition accuracy than existing CNNs with comparable latency when quantized, due to higher latency reduction rate (average 65%).

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.