Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Fairness-Oriented Semi-Chaotic Genetic Algorithm-Based Channel Assignment Technique for Nodes Starvation Problem in Wireless Mesh Network (2006.09655v1)

Published 17 Jun 2020 in cs.NI and cs.NE

Abstract: Multi-Radio Multi-Channel Wireless Mesh Networks (WMNs) have emerged as a scalable, reliable, and agile wireless network that supports many types of innovative technologies such as the Internet of Things (IoT) and vehicular networks. Due to the limited number of orthogonal channels, interference between channels adversely affects the fair distribution of bandwidth among mesh clients, causing node starvation in terms of insufficient bandwidth, which impedes the adoption of WMN as an efficient access technology. Therefore, a fair channel assignment is crucial for the mesh clients to utilize the available resources. However, the node starvation problem due to unfair channel distribution has been vastly overlooked during channel assignment by the extant research. Instead, existing channel assignment algorithms either reduce the total network interference or maximize the total network throughput, which neither guarantees a fair distribution of the channels nor eliminates node starvation. To this end, the Fairness-Oriented Semi-Chaotic Genetic Algorithm-Based Channel Assignment Technique (FA-SCGA-CAA) was proposed in this paper for Nodes Starvation Problem in Wireless Mesh Networks. FA-SCGA-CAA optimizes fairness based on multiple-criterion using a modified version of the Genetic Algorithm (GA). The modification includes proposing a semi-chaotic technique for creating the primary chromosome with powerful genes. Such a chromosome was used to create a strong population that directs the search towards the global minima in an effective and efficient way. The outcome is a nonlinear fairness oriented fitness function that aims at maximizing the link fairness while minimizing the link interference. Comparison with related work shows that the proposed FA_SCGA_CAA reduced the potential nodes starvation by 22% and improved network capacity utilization by 23%.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.