Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Visual Attention for Musical Instrument Recognition (2006.09640v2)

Published 17 Jun 2020 in eess.AS, cs.IR, cs.LG, and cs.SD

Abstract: In the field of music information retrieval, the task of simultaneously identifying the presence or absence of multiple musical instruments in a polyphonic recording remains a hard problem. Previous works have seen some success in improving instrument classification by applying temporal attention in a multi-instance multi-label setting, while another series of work has also suggested the role of pitch and timbre in improving instrument recognition performance. In this project, we further explore the use of attention mechanism in a timbral-temporal sense, `a la visual attention, to improve the performance of musical instrument recognition using weakly-labeled data. Two approaches to this task have been explored. The first approach applies attention mechanism to the sliding-window paradigm, where a prediction based on each timbral-temporal instance' is given an attention weight, before aggregation to produce the final prediction. The second approach is based on a recurrent model of visual attention where the network only attends to parts of the spectrogram and decide where to attend to next, given a limited number ofglimpses'.

Citations (3)

Summary

We haven't generated a summary for this paper yet.