Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Aligning with Heterogeneous Preferences for Kidney Exchange (2006.09519v1)

Published 16 Jun 2020 in cs.AI and cs.CY

Abstract: AI algorithms increasingly make decisions that impact entire groups of humans. Since humans tend to hold varying and even conflicting preferences, AI algorithms responsible for making decisions on behalf of such groups encounter the problem of preference aggregation: combining inconsistent and sometimes contradictory individual preferences into a representative aggregate. In this paper, we address this problem in a real-world public health context: kidney exchange. The algorithms that allocate kidneys from living donors to patients needing transplants in kidney exchange matching markets should prioritize patients in a way that aligns with the values of the community they serve, but allocation preferences vary widely across individuals. In this paper, we propose, implement and evaluate a methodology for prioritizing patients based on such heterogeneous moral preferences. Instead of selecting a single static set of patient weights, we learn a distribution over preference functions based on human subject responses to allocation dilemmas, then sample from this distribution to dynamically determine patient weights during matching. We find that this methodology increases the average rank of matched patients in the sampled preference ordering, indicating better satisfaction of group preferences. We hope that this work will suggest a roadmap for future automated moral decision making on behalf of heterogeneous groups.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)