Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Walk Message Passing Neural Networks and Second-Order Graph Neural Networks (2006.09499v1)

Published 16 Jun 2020 in cs.LG and stat.ML

Abstract: The expressive power of message passing neural networks (MPNNs) is known to match the expressive power of the 1-dimensional Weisfeiler-Leman graph (1-WL) isomorphism test. To boost the expressive power of MPNNs, a number of graph neural network architectures have recently been proposed based on higher-dimensional Weisfeiler-Leman tests. In this paper we consider the two-dimensional (2-WL) test and introduce a new type of MPNNs, referred to as $\ell$-walk MPNNs, which aggregate features along walks of length $\ell$ between vertices. We show that $2$-walk MPNNs match 2-WL in expressive power. More generally, $\ell$-walk MPNNs, for any $\ell\geq 2$, are shown to match the expressive power of the recently introduced $\ell$-walk refinement procedure (W[$\ell$]). Based on a correspondence between 2-WL and W[$\ell$], we observe that $\ell$-walk MPNNs and $2$-walk MPNNs have the same expressive power, i.e., they can distinguish the same pairs of graphs, but $\ell$-walk MPNNs can possibly distinguish pairs of graphs faster than $2$-walk MPNNs. When it comes to concrete learnable graph neural network (GNN) formalisms that match 2-WL or W[$\ell$] in expressive power, we consider second-order graph neural networks that allow for non-linear layers. In particular, to match W[$\ell$] in expressive power, we allow $\ell-1$ matrix multiplications in each layer. We propose different versions of second-order GNNs depending on the type of features (i.e., coming from a countable set, or coming from an uncountable set) as this affects the number of dimensions needed to represent the features. Our results indicate that increasing non-linearity in layers by means of allowing multiple matrix multiplications does not increase expressive power. At the very best, it results in a faster distinction of input graphs.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.