Papers
Topics
Authors
Recent
2000 character limit reached

$Q$-learning with Logarithmic Regret (2006.09118v2)

Published 16 Jun 2020 in cs.LG, math.OC, and stat.ML

Abstract: This paper presents the first non-asymptotic result showing that a model-free algorithm can achieve a logarithmic cumulative regret for episodic tabular reinforcement learning if there exists a strictly positive sub-optimality gap in the optimal $Q$-function. We prove that the optimistic $Q$-learning studied in [Jin et al. 2018] enjoys a ${\mathcal{O}}\left(\frac{SA\cdot \mathrm{poly}\left(H\right)}{\Delta_{\min}}\log\left(SAT\right)\right)$ cumulative regret bound, where $S$ is the number of states, $A$ is the number of actions, $H$ is the planning horizon, $T$ is the total number of steps, and $\Delta_{\min}$ is the minimum sub-optimality gap. This bound matches the information theoretical lower bound in terms of $S,A,T$ up to a $\log\left(SA\right)$ factor. We further extend our analysis to the discounted setting and obtain a similar logarithmic cumulative regret bound.

Citations (58)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.