Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

ZnG: Architecting GPU Multi-Processors with New Flash for Scalable Data Analysis (2006.08975v1)

Published 16 Jun 2020 in cs.AR

Abstract: We propose ZnG, a new GPU-SSD integrated architecture, which can maximize the memory capacity in a GPU and address performance penalties imposed by an SSD. Specifically, ZnG replaces all GPU internal DRAMs with an ultra-low-latency SSD to maximize the GPU memory capacity. ZnG further removes performance bottleneck of the SSD by replacing its flash channels with a high-throughput flash network and integrating SSD firmware in the GPU's MMU to reap the benefits of hardware accelerations. Although flash arrays within the SSD can deliver high accumulated bandwidth, only a small fraction of such bandwidth can be utilized by GPU's memory requests due to mismatches of their access granularity. To address this, ZnG employs a large L2 cache and flash registers to buffer the memory requests. Our evaluation results indicate that ZnG can achieve 7.5x higher performance than prior work.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.