Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
60 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Equilibrium Propagation for Complete Directed Neural Networks (2006.08798v2)

Published 15 Jun 2020 in cs.LG, cs.NE, and stat.ML

Abstract: Artificial neural networks, one of the most successful approaches to supervised learning, were originally inspired by their biological counterparts. However, the most successful learning algorithm for artificial neural networks, backpropagation, is considered biologically implausible. We contribute to the topic of biologically plausible neuronal learning by building upon and extending the equilibrium propagation learning framework. Specifically, we introduce: a new neuronal dynamics and learning rule for arbitrary network architectures; a sparsity-inducing method able to prune irrelevant connections; a dynamical-systems characterization of the models, using Lyapunov theory.

Summary

We haven't generated a summary for this paper yet.