Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A GPM-based algorithm for solving regularized Wasserstein barycenter problems in some spaces of probability measures (2006.08743v4)

Published 15 Jun 2020 in math.OC, cs.NA, and math.NA

Abstract: In this paper, we focus on the analysis of the regularized Wasserstein barycenter problem. We provide uniqueness and a characterization of the barycenter for two important classes of probability measures: (i) Gaussian distributions and (ii) $q$-Gaussian distributions; each regularized by a particular entropy functional. We propose an algorithm based on gradient projection method in the space of matrices in order to compute these regularized barycenters. We also consider a general class of $\varphi$-exponential measures, for which only the non-regularized barycenter is studied. Finally, we numerically show the influence of parameters and stability of the algorithm under small perturbation of data.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube