Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CryptoNAS: Private Inference on a ReLU Budget (2006.08733v2)

Published 15 Jun 2020 in cs.LG, cs.CR, and stat.ML

Abstract: Machine learning as a service has given raise to privacy concerns surrounding clients' data and providers' models and has catalyzed research in private inference (PI): methods to process inferences without disclosing inputs. Recently, researchers have adapted cryptographic techniques to show PI is possible, however all solutions increase inference latency beyond practical limits. This paper makes the observation that existing models are ill-suited for PI and proposes a novel NAS method, named CryptoNAS, for finding and tailoring models to the needs of PI. The key insight is that in PI operator latency cost are non-linear operations (e.g., ReLU) dominate latency, while linear layers become effectively free. We develop the idea of a ReLU budget as a proxy for inference latency and use CryptoNAS to build models that maximize accuracy within a given budget. CryptoNAS improves accuracy by 3.4% and latency by 2.4x over the state-of-the-art.

Citations (79)

Summary

We haven't generated a summary for this paper yet.