Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Application of Machine Learning to Predict the Risk of Alzheimer's Disease: An Accurate and Practical Solution for Early Diagnostics (2006.08702v1)

Published 2 Jun 2020 in q-bio.QM, cs.LG, and stat.ML

Abstract: Alzheimer's Disease (AD) ravages the cognitive ability of more than 5 million Americans and creates an enormous strain on the health care system. This paper proposes a machine learning predictive model for AD development without medical imaging and with fewer clinical visits and tests, in hopes of earlier and cheaper diagnoses. That earlier diagnoses could be critical in the effectiveness of any drug or medical treatment to cure this disease. Our model is trained and validated using demographic, biomarker and cognitive test data from two prominent research studies: Alzheimer's Disease Neuroimaging Initiative (ADNI) and Australian Imaging, Biomarker Lifestyle Flagship Study of Aging (AIBL). We systematically explore different machine learning models, pre-processing methods and feature selection techniques. The most performant model demonstrates greater than 90% accuracy and recall in predicting AD, and the results generalize across sub-studies of ADNI and to the independent AIBL study. We also demonstrate that these results are robust to reducing the number of clinical visits or tests per visit. Using a metaclassification algorithm and longitudinal data analysis we are able to produce a "lean" diagnostic protocol with only 3 tests and 4 clinical visits that can predict Alzheimer's development with 87% accuracy and 79% recall. This novel work can be adapted into a practical early diagnostic tool for predicting the development of Alzheimer's that maximizes accuracy while minimizing the number of necessary diagnostic tests and clinical visits.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.