Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Towards practical differentially private causal graph discovery (2006.08598v1)

Published 15 Jun 2020 in cs.CR, cs.LG, and stat.ME

Abstract: Causal graph discovery refers to the process of discovering causal relation graphs from purely observational data. Like other statistical data, a causal graph might leak sensitive information about participants in the dataset. In this paper, we present a differentially private causal graph discovery algorithm, Priv-PC, which improves both utility and running time compared to the state-of-the-art. The design of Priv-PC follows a novel paradigm called sieve-and-examine which uses a small amount of privacy budget to filter out "insignificant" queries, and leverages the remaining budget to obtain highly accurate answers for the "significant" queries. We also conducted the first sensitivity analysis for conditional independence tests including conditional Kendall's tau and conditional Spearman's rho. We evaluated Priv-PC on 4 public datasets and compared with the state-of-the-art. The results show that Priv-PC achieves 10.61 to 32.85 times speedup and better utility.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.