Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Diversity Policy Gradient for Sample Efficient Quality-Diversity Optimization (2006.08505v5)

Published 15 Jun 2020 in cs.AI and cs.LG

Abstract: A fascinating aspect of nature lies in its ability to produce a large and diverse collection of organisms that are all high-performing in their niche. By contrast, most AI algorithms focus on finding a single efficient solution to a given problem. Aiming for diversity in addition to performance is a convenient way to deal with the exploration-exploitation trade-off that plays a central role in learning. It also allows for increased robustness when the returned collection contains several working solutions to the considered problem, making it well-suited for real applications such as robotics. Quality-Diversity (QD) methods are evolutionary algorithms designed for this purpose. This paper proposes a novel algorithm, QDPG, which combines the strength of Policy Gradient algorithms and Quality Diversity approaches to produce a collection of diverse and high-performing neural policies in continuous control environments. The main contribution of this work is the introduction of a Diversity Policy Gradient (DPG) that exploits information at the time-step level to drive policies towards more diversity in a sample-efficient manner. Specifically, QDPG selects neural controllers from a MAP-Elites grid and uses two gradient-based mutation operators to improve both quality and diversity. Our results demonstrate that QDPG is significantly more sample-efficient than its evolutionary competitors.

Citations (55)

Summary

We haven't generated a summary for this paper yet.