Papers
Topics
Authors
Recent
2000 character limit reached

The leave-one-covariate-out conditional randomization test (2006.08482v2)

Published 15 Jun 2020 in stat.ME and stat.ML

Abstract: Conditional independence testing is an important problem, yet provably hard without assumptions. One of the assumptions that has become popular of late is called "model-X", where we assume we know the joint distribution of the covariates, but assume nothing about the conditional distribution of the outcome given the covariates. Knockoffs is a popular methodology associated with this framework, but it suffers from two main drawbacks: only one-bit $p$-values are available for inference on each variable, and the method is randomized with significant variability across runs in practice. The conditional randomization test (CRT) is thought to be the "right" solution under model-X, but usually viewed as computationally inefficient. This paper proposes a computationally efficient leave-one-covariate-out (LOCO) CRT that addresses both drawbacks of knockoffs. LOCO CRT produces valid $p$-values that can be used to control the familywise error rate, and has nearly zero algorithmic variability. For L1 regularized M-estimators, we develop an even faster variant called L1ME CRT, which reuses computation by leveraging a novel observation about the stability of the cross-validated lasso to removing inactive variables. Last, for multivariate Gaussian covariates, we present a closed form expression for the LOCO CRT $p$-value, thus completely eliminating resampling in this important special case.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.