Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Bayesian Neural Network via Stochastic Gradient Descent (2006.08453v4)

Published 4 Jun 2020 in cs.LG and stat.ML

Abstract: The goal of bayesian approach used in variational inference is to minimize the KL divergence between variational distribution and unknown posterior distribution. This is done by maximizing the Evidence Lower Bound (ELBO). A neural network is used to parametrize these distributions using Stochastic Gradient Descent. This work extends the work done by others by deriving the variational inference models. We show how SGD can be applied on bayesian neural networks by gradient estimation techniques. For validation, we have tested our model on 5 UCI datasets and the metrics chosen for evaluation are Root Mean Square Error (RMSE) error and negative log likelihood. Our work considerably beats the previous state of the art approaches for regression using bayesian neural networks.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)