Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Bayesian Neural Network via Stochastic Gradient Descent (2006.08453v4)

Published 4 Jun 2020 in cs.LG and stat.ML

Abstract: The goal of bayesian approach used in variational inference is to minimize the KL divergence between variational distribution and unknown posterior distribution. This is done by maximizing the Evidence Lower Bound (ELBO). A neural network is used to parametrize these distributions using Stochastic Gradient Descent. This work extends the work done by others by deriving the variational inference models. We show how SGD can be applied on bayesian neural networks by gradient estimation techniques. For validation, we have tested our model on 5 UCI datasets and the metrics chosen for evaluation are Root Mean Square Error (RMSE) error and negative log likelihood. Our work considerably beats the previous state of the art approaches for regression using bayesian neural networks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.