Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Machine Common Sense (2006.08409v1)

Published 15 Jun 2020 in cs.AI

Abstract: Machine common sense remains a broad, potentially unbounded problem in AI. There is a wide range of strategies that can be employed to make progress on this challenge. This article deals with the aspects of modeling commonsense reasoning focusing on such domain as interpersonal interactions. The basic idea is that there are several types of commonsense reasoning: one is manifested at the logical level of physical actions, the other deals with the understanding of the essence of human-human interactions. Existing approaches, based on formal logic and artificial neural networks, allow for modeling only the first type of common sense. To model the second type, it is vital to understand the motives and rules of human behavior. This model is based on real-life heuristics, i.e., the rules of thumb, developed through knowledge and experience of different generations. Such knowledge base allows for development of an expert system with inference and explanatory mechanisms (commonsense reasoning algorithms and personal models). Algorithms provide tools for a situation analysis, while personal models make it possible to identify personality traits. The system so designed should perform the function of amplified intelligence for interactions, including human-machine.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.