Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

COALA: Co-Aligned Autoencoders for Learning Semantically Enriched Audio Representations (2006.08386v2)

Published 15 Jun 2020 in cs.LG, cs.IR, eess.AS, and stat.ML

Abstract: Audio representation learning based on deep neural networks (DNNs) emerged as an alternative approach to hand-crafted features. For achieving high performance, DNNs often need a large amount of annotated data which can be difficult and costly to obtain. In this paper, we propose a method for learning audio representations, aligning the learned latent representations of audio and associated tags. Aligning is done by maximizing the agreement of the latent representations of audio and tags, using a contrastive loss. The result is an audio embedding model which reflects acoustic and semantic characteristics of sounds. We evaluate the quality of our embedding model, measuring its performance as a feature extractor on three different tasks (namely, sound event recognition, and music genre and musical instrument classification), and investigate what type of characteristics the model captures. Our results are promising, sometimes in par with the state-of-the-art in the considered tasks and the embeddings produced with our method are well correlated with some acoustic descriptors.

Citations (30)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.