Randomized polynomial-time equivalence between determinant and trace-IMM equivalence tests (2006.08272v1)
Abstract: Equivalence testing for a polynomial family {g_m} over a field F is the following problem: Given black-box access to an n-variate polynomial f(x), where n is the number of variables in g_m, check if there exists an A in GL(n,F) such that f(x) = g_m(Ax). If yes, then output such an A. The complexity of equivalence testing has been studied for a number of important polynomial families, including the determinant (Det) and the two popular variants of the iterated matrix multiplication polynomial: IMM_{w,d} (the (1,1) entry of the product of d many w $\times$ w symbolic matrices) and Tr-IMM_{w,d} (the trace of the product of d many w $\times$ w symbolic matrices). The families Det, IMM and Tr-IMM are VBP-complete, and so, in this sense, they have the same complexity. But, do they have the same equivalence testing complexity? We show that the answer is 'yes' for Det and Tr-IMM (modulo the use of randomness). The result is obtained by connecting the two problems via another well-studied problem called the full matrix algebra isomorphism problem (FMAI). In particular, we prove the following: 1. Testing equivalence of polynomials to Tr-IMM_{w,d}, for d$\geq$ 3 and w$\geq$ 2, is randomized polynomial-time Turing reducible to testing equivalence of polynomials to Det_w, the determinant of the w $\times$ w matrix of formal variables. (Here, d need not be a constant.) 2. FMAI is randomized polynomial-time Turing reducible to equivalence testing (in fact, to tensor isomorphism testing) for the family of matrix multiplication tensors {Tr-IMM_{w,3}}. These in conjunction with the randomized poly-time reduction from determinant equivalence testing to FMAI [Garg,Gupta,Kayal,Saha19], imply that FMAI, equivalence testing for Tr-IMM and for Det, and the $3$-tensor isomorphism problem for the family of matrix multiplication tensors are randomized poly-time equivalent under Turing reductions.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.