Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Randomized polynomial-time equivalence between determinant and trace-IMM equivalence tests (2006.08272v1)

Published 15 Jun 2020 in cs.CC

Abstract: Equivalence testing for a polynomial family {g_m} over a field F is the following problem: Given black-box access to an n-variate polynomial f(x), where n is the number of variables in g_m, check if there exists an A in GL(n,F) such that f(x) = g_m(Ax). If yes, then output such an A. The complexity of equivalence testing has been studied for a number of important polynomial families, including the determinant (Det) and the two popular variants of the iterated matrix multiplication polynomial: IMM_{w,d} (the (1,1) entry of the product of d many w $\times$ w symbolic matrices) and Tr-IMM_{w,d} (the trace of the product of d many w $\times$ w symbolic matrices). The families Det, IMM and Tr-IMM are VBP-complete, and so, in this sense, they have the same complexity. But, do they have the same equivalence testing complexity? We show that the answer is 'yes' for Det and Tr-IMM (modulo the use of randomness). The result is obtained by connecting the two problems via another well-studied problem called the full matrix algebra isomorphism problem (FMAI). In particular, we prove the following: 1. Testing equivalence of polynomials to Tr-IMM_{w,d}, for d$\geq$ 3 and w$\geq$ 2, is randomized polynomial-time Turing reducible to testing equivalence of polynomials to Det_w, the determinant of the w $\times$ w matrix of formal variables. (Here, d need not be a constant.) 2. FMAI is randomized polynomial-time Turing reducible to equivalence testing (in fact, to tensor isomorphism testing) for the family of matrix multiplication tensors {Tr-IMM_{w,3}}. These in conjunction with the randomized poly-time reduction from determinant equivalence testing to FMAI [Garg,Gupta,Kayal,Saha19], imply that FMAI, equivalence testing for Tr-IMM and for Det, and the $3$-tensor isomorphism problem for the family of matrix multiplication tensors are randomized poly-time equivalent under Turing reductions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.