Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 89 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Extreme Gradient Boosted Multi-label Trees for Dynamic Classifier Chains (2006.08094v1)

Published 15 Jun 2020 in cs.LG and stat.ML

Abstract: Classifier chains is a key technique in multi-label classification, since it allows to consider label dependencies effectively. However, the classifiers are aligned according to a static order of the labels. In the concept of dynamic classifier chains (DCC) the label ordering is chosen for each prediction dynamically depending on the respective instance at hand. We combine this concept with the boosting of extreme gradient boosted trees (XGBoost), an effective and scalable state-of-the-art technique, and incorporate DCC in a fast multi-label extension of XGBoost which we make publicly available. As only positive labels have to be predicted and these are usually only few, the training costs can be further substantially reduced. Moreover, as experiments on eleven datasets show, the length of the chain allows for a more control over the usage of previous predictions and hence over the measure one want to optimize.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.