Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Nonasymptotic Guarantees for Spiked Matrix Recovery with Generative Priors (2006.07953v2)

Published 14 Jun 2020 in stat.ML, cs.IT, cs.LG, math.IT, math.OC, math.ST, and stat.TH

Abstract: Many problems in statistics and machine learning require the reconstruction of a rank-one signal matrix from noisy data. Enforcing additional prior information on the rank-one component is often key to guaranteeing good recovery performance. One such prior on the low-rank component is sparsity, giving rise to the sparse principal component analysis problem. Unfortunately, there is strong evidence that this problem suffers from a computational-to-statistical gap, which may be fundamental. In this work, we study an alternative prior where the low-rank component is in the range of a trained generative network. We provide a non-asymptotic analysis with optimal sample complexity, up to logarithmic factors, for rank-one matrix recovery under an expansive-Gaussian network prior. Specifically, we establish a favorable global optimization landscape for a nonlinear least squares objective, provided the number of samples is on the order of the dimensionality of the input to the generative model. This result suggests that generative priors have no computational-to-statistical gap for structured rank-one matrix recovery in the finite data, nonasymptotic regime. We present this analysis in the case of both the Wishart and Wigner spiked matrix models.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.