Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Solos: A Dataset for Audio-Visual Music Analysis (2006.07931v2)

Published 14 Jun 2020 in eess.AS, cs.DB, and cs.SD

Abstract: In this paper, we present a new dataset of music performance videos which can be used for training machine learning methods for multiple tasks such as audio-visual blind source separation and localization, cross-modal correspondences, cross-modal generation and, in general, any audio-visual self-supervised task. These videos, gathered from YouTube, consist of solo musical performances of 13 different instruments. Compared to previously proposed audio-visual datasets, Solos is cleaner since a big amount of its recordings are auditions and manually checked recordings, ensuring there is no background noise nor effects added in the video post-processing. Besides, it is, up to the best of our knowledge, the only dataset that contains the whole set of instruments present in the URMP\cite{URPM} dataset, a high-quality dataset of 44 audio-visual recordings of multi-instrument classical music pieces with individual audio tracks. URMP was intented to be used for source separation, thus, we evaluate the performance on the URMP dataset of two different source-separation models trained on Solos. The dataset is publicly available at https://juanfmontesinos.github.io/Solos/

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube