Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A generative adversarial network approach to (ensemble) weather prediction (2006.07718v1)

Published 13 Jun 2020 in physics.ao-ph, cs.LG, and stat.ML

Abstract: We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe. The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019. The forecasts show a good qualitative and quantitative agreement with the true reanalysis data for the geopotential height and two-meter temperature, while failing for total precipitation, thus indicating that weather forecasts based on data alone may be possible for specific meteorological parameters. We further use Monte-Carlo dropout to develop an ensemble weather prediction system based purely on deep learning strategies, which is computationally cheap and further improves the skill of the forecasting model, by allowing to quantify the uncertainty in the current weather forecast as learned by the model.

Citations (71)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)