Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

HRDNet: High-resolution Detection Network for Small Objects (2006.07607v1)

Published 13 Jun 2020 in cs.CV

Abstract: Small object detection is challenging because small objects do not contain detailed information and may even disappear in the deep network. Usually, feeding high-resolution images into a network can alleviate this issue. However, simply enlarging the resolution will cause more problems, such as that, it aggravates the large variant of object scale and introduces unbearable computation cost. To keep the benefits of high-resolution images without bringing up new problems, we proposed the High-Resolution Detection Network (HRDNet). HRDNet takes multiple resolution inputs using multi-depth backbones. To fully take advantage of multiple features, we proposed Multi-Depth Image Pyramid Network (MD-IPN) and Multi-Scale Feature Pyramid Network (MS-FPN) in HRDNet. MD-IPN maintains multiple position information using multiple depth backbones. Specifically, high-resolution input will be fed into a shallow network to reserve more positional information and reducing the computational cost while low-resolution input will be fed into a deep network to extract more semantics. By extracting various features from high to low resolutions, the MD-IPN is able to improve the performance of small object detection as well as maintaining the performance of middle and large objects. MS-FPN is proposed to align and fuse multi-scale feature groups generated by MD-IPN to reduce the information imbalance between these multi-scale multi-level features. Extensive experiments and ablation studies are conducted on the standard benchmark dataset MS COCO2017, Pascal VOC2007/2012 and a typical small object dataset, VisDrone 2019. Notably, our proposed HRDNet achieves the state-of-the-art on these datasets and it performs better on small objects.

Citations (91)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.