Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Unbiased Auxiliary Classifier GANs with MINE (2006.07567v1)

Published 13 Jun 2020 in cs.CV and cs.LG

Abstract: Auxiliary Classifier GANs (AC-GANs) are widely used conditional generative models and are capable of generating high-quality images. Previous work has pointed out that AC-GAN learns a biased distribution. To remedy this, Twin Auxiliary Classifier GAN (TAC-GAN) introduces a twin classifier to the min-max game. However, it has been reported that using a twin auxiliary classifier may cause instability in training. To this end, we propose an Unbiased Auxiliary GANs (UAC-GAN) that utilizes the Mutual Information Neural Estimator (MINE) to estimate the mutual information between the generated data distribution and labels. To further improve the performance, we also propose a novel projection-based statistics network architecture for MINE. Experimental results on three datasets, including Mixture of Gaussian (MoG), MNIST and CIFAR10 datasets, show that our UAC-GAN performs better than AC-GAN and TAC-GAN. Code can be found on the project website.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com