Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Learning-to-Learn Personalised Human Activity Recognition Models (2006.07472v1)

Published 12 Jun 2020 in cs.CV and cs.LG

Abstract: Human Activity Recognition~(HAR) is the classification of human movement, captured using one or more sensors either as wearables or embedded in the environment~(e.g. depth cameras, pressure mats). State-of-the-art methods of HAR rely on having access to a considerable amount of labelled data to train deep architectures with many train-able parameters. This becomes prohibitive when tasked with creating models that are sensitive to personal nuances in human movement, explicitly present when performing exercises. In addition, it is not possible to collect training data to cover all possible subjects in the target population. Accordingly, learning personalised models with few data remains an interesting challenge for HAR research. We present a meta-learning methodology for learning to learn personalised HAR models for HAR; with the expectation that the end-user need only provides a few labelled data but can benefit from the rapid adaptation of a generic meta-model. We introduce two algorithms, Personalised MAML and Personalised Relation Networks inspired by existing Meta-Learning algorithms but optimised for learning HAR models that are adaptable to any person in health and well-being applications. A comparative study shows significant performance improvements against the state-of-the-art Deep Learning algorithms and the Few-shot Meta-Learning algorithms in multiple HAR domains.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.