Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Attentive Feature Reuse for Multi Task Meta learning (2006.07438v1)

Published 12 Jun 2020 in cs.LG and stat.ML

Abstract: We develop new algorithms for simultaneous learning of multiple tasks (e.g., image classification, depth estimation), and for adapting to unseen task/domain distributions within those high-level tasks (e.g., different environments). First, we learn common representations underlying all tasks. We then propose an attention mechanism to dynamically specialize the network, at runtime, for each task. Our approach is based on weighting each feature map of the backbone network, based on its relevance to a particular task. To achieve this, we enable the attention module to learn task representations during training, which are used to obtain attention weights. Our method improves performance on new, previously unseen environments, and is 1.5x faster than standard existing meta learning methods using similar architectures. We highlight performance improvements for Multi-Task Meta Learning of 4 tasks (image classification, depth, vanishing point, and surface normal estimation), each over 10 to 25 test domains/environments, a result that could not be achieved with standard meta learning techniques like MAML.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.