Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Comparing Natural Language Processing Techniques for Alzheimer's Dementia Prediction in Spontaneous Speech (2006.07358v2)

Published 12 Jun 2020 in cs.LG, cs.CL, cs.SD, eess.AS, and stat.ML

Abstract: Alzheimer's Dementia (AD) is an incurable, debilitating, and progressive neurodegenerative condition that affects cognitive function. Early diagnosis is important as therapeutics can delay progression and give those diagnosed vital time. Developing models that analyse spontaneous speech could eventually provide an efficient diagnostic modality for earlier diagnosis of AD. The Alzheimer's Dementia Recognition through Spontaneous Speech task offers acoustically pre-processed and balanced datasets for the classification and prediction of AD and associated phenotypes through the modelling of spontaneous speech. We exclusively analyse the supplied textual transcripts of the spontaneous speech dataset, building and comparing performance across numerous models for the classification of AD vs controls and the prediction of Mental Mini State Exam scores. We rigorously train and evaluate Support Vector Machines (SVMs), Gradient Boosting Decision Trees (GBDT), and Conditional Random Fields (CRFs) alongside deep learning Transformer based models. We find our top performing models to be a simple Term Frequency-Inverse Document Frequency (TF-IDF) vectoriser as input into a SVM model and a pre-trained Transformer based model `DistilBERT' when used as an embedding layer into simple linear models. We demonstrate test set scores of 0.81-0.82 across classification metrics and a RMSE of 4.58.

Citations (42)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.