Papers
Topics
Authors
Recent
2000 character limit reached

Learning from Label Proportions: A Mutual Contamination Framework (2006.07330v1)

Published 12 Jun 2020 in stat.ML and cs.LG

Abstract: Learning from label proportions (LLP) is a weakly supervised setting for classification in which unlabeled training instances are grouped into bags, and each bag is annotated with the proportion of each class occurring in that bag. Prior work on LLP has yet to establish a consistent learning procedure, nor does there exist a theoretically justified, general purpose training criterion. In this work we address these two issues by posing LLP in terms of mutual contamination models (MCMs), which have recently been applied successfully to study various other weak supervision settings. In the process, we establish several novel technical results for MCMs, including unbiased losses and generalization error bounds under non-iid sampling plans. We also point out the limitations of a common experimental setting for LLP, and propose a new one based on our MCM framework.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.