Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

STONNE: A Detailed Architectural Simulator for Flexible Neural Network Accelerators (2006.07137v1)

Published 10 Jun 2020 in eess.SP, cs.AR, and cs.LG

Abstract: The design of specialized architectures for accelerating the inference procedure of Deep Neural Networks (DNNs) is a booming area of research nowadays. First-generation rigid proposals have been rapidly replaced by more advanced flexible accelerator architectures able to efficiently support a variety of layer types and dimensions. As the complexity of the designs grows, it is more and more appealing for researchers to have cycle-accurate simulation tools at their disposal to allow for fast and accurate design-space exploration, and rapid quantification of the efficacy of architectural enhancements during the early stages of a design. To this end, we present STONNE (Simulation TOol of Neural Network Engines), a cycle-accurate, highly-modular and highly-extensible simulation framework that enables end-to-end evaluation of flexible accelerator architectures running complete contemporary DNN models. We use STONNE to model the recently proposed MAERI architecture and show how it can closely approach the performance results of the publicly available BSV-coded MAERI implementation. Then, we conduct a comprehensive evaluation and demonstrate that the folding strategy implemented for MAERI results in very low compute unit utilization (25% on average across 5 DNN models) which in the end translates into poor performance.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube