Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Sparse approximation of triangular transports. Part I: the finite dimensional case (2006.06994v2)

Published 12 Jun 2020 in math.NA, cs.NA, math.ST, and stat.TH

Abstract: For two probability measures $\rho$ and $\pi$ with analytic densities on the $d$-dimensional cube $[-1,1]d$, we investigate the approximation of the unique triangular monotone Knothe-Rosenblatt transport $T:[-1,1]d\to [-1,1]d$, such that the pushforward $T_\sharp\rho$ equals $\pi$. It is shown that for $d\in\mathbb{N}$ there exist approximations $\tilde T$ of $T$, based on either sparse polynomial expansions or deep ReLU neural networks, such that the distance between $\tilde T_\sharp\rho$ and $\pi$ decreases exponentially. More precisely, we prove error bounds of the type $\exp(-\beta N{1/d})$ (or $\exp(-\beta N{1/(d+1)})$ for neural networks), where $N$ refers to the dimension of the ansatz space (or the size of the network) containing $\tilde T$; the notion of distance comprises the Hellinger distance, the total variation distance, the Wasserstein distance and the Kullback-Leibler divergence. Our construction guarantees $\tilde T$ to be a monotone triangular bijective transport on the hypercube $[-1,1]d$. Analogous results hold for the inverse transport $S=T{-1}$. The proofs are constructive, and we give an explicit a priori description of the ansatz space, which can be used for numerical implementations.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.