Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Incorporating User Micro-behaviors and Item Knowledge into Multi-task Learning for Session-based Recommendation (2006.06922v1)

Published 12 Jun 2020 in cs.IR and cs.LG

Abstract: Session-based recommendation (SR) has become an important and popular component of various e-commerce platforms, which aims to predict the next interacted item based on a given session. Most of existing SR models only focus on exploiting the consecutive items in a session interacted by a certain user, to capture the transition pattern among the items. Although some of them have been proven effective, the following two insights are often neglected. First, a user's micro-behaviors, such as the manner in which the user locates an item, the activities that the user commits on an item (e.g., reading comments, adding to cart), offer fine-grained and deep understanding of the user's preference. Second, the item attributes, also known as item knowledge, provide side information to model the transition pattern among interacted items and alleviate the data sparsity problem. These insights motivate us to propose a novel SR model MKM-SR in this paper, which incorporates user Micro-behaviors and item Knowledge into Multi-task learning for Session-based Recommendation. Specifically, a given session is modeled on micro-behavior level in MKM-SR, i.e., with a sequence of item-operation pairs rather than a sequence of items, to capture the transition pattern in the session sufficiently. Furthermore, we propose a multi-task learning paradigm to involve learning knowledge embeddings which plays a role as an auxiliary task to promote the major task of SR. It enables our model to obtain better session representations, resulting in more precise SR recommendation results. The extensive evaluations on two benchmark datasets demonstrate MKM-SR's superiority over the state-of-the-art SR models, justifying the strategy of incorporating knowledge learning.

Citations (102)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.