Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Optimization Theory for ReLU Neural Networks Trained with Normalization Layers (2006.06878v1)

Published 11 Jun 2020 in cs.LG, math.OC, and stat.ML

Abstract: The success of deep neural networks is in part due to the use of normalization layers. Normalization layers like Batch Normalization, Layer Normalization and Weight Normalization are ubiquitous in practice, as they improve generalization performance and speed up training significantly. Nonetheless, the vast majority of current deep learning theory and non-convex optimization literature focuses on the un-normalized setting, where the functions under consideration do not exhibit the properties of commonly normalized neural networks. In this paper, we bridge this gap by giving the first global convergence result for two-layer neural networks with ReLU activations trained with a normalization layer, namely Weight Normalization. Our analysis shows how the introduction of normalization layers changes the optimization landscape and can enable faster convergence as compared with un-normalized neural networks.

Citations (29)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.