Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multigrid-in-Channels Architectures for Wide Convolutional Neural Networks (2006.06799v2)

Published 11 Jun 2020 in cs.LG, cs.CV, and stat.ML

Abstract: We present a multigrid approach that combats the quadratic growth of the number of parameters with respect to the number of channels in standard convolutional neural networks (CNNs). It has been shown that there is a redundancy in standard CNNs, as networks with much sparser convolution operators can yield similar performance to full networks. The sparsity patterns that lead to such behavior, however, are typically random, hampering hardware efficiency. In this work, we present a multigrid-in-channels approach for building CNN architectures that achieves full coupling of the channels, and whose number of parameters is linearly proportional to the width of the network. To this end, we replace each convolution layer in a generic CNN with a multilevel layer consisting of structured (i.e., grouped) convolutions. Our examples from supervised image classification show that applying this strategy to residual networks and MobileNetV2 considerably reduces the number of parameters without negatively affecting accuracy. Therefore, we can widen networks without dramatically increasing the number of parameters or operations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jonathan Ephrath (4 papers)
  2. Lars Ruthotto (42 papers)
  3. Eran Treister (52 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.