Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evading Curse of Dimensionality in Unconstrained Private GLMs via Private Gradient Descent (2006.06783v2)

Published 11 Jun 2020 in cs.CR, cs.LG, math.OC, and stat.ML

Abstract: We revisit the well-studied problem of differentially private empirical risk minimization (ERM). We show that for unconstrained convex generalized linear models (GLMs), one can obtain an excess empirical risk of $\tilde O\left(\sqrt{{\texttt{rank}}}/\epsilon n\right)$, where ${\texttt{rank}}$ is the rank of the feature matrix in the GLM problem, $n$ is the number of data samples, and $\epsilon$ is the privacy parameter. This bound is attained via differentially private gradient descent (DP-GD). Furthermore, via the first lower bound for unconstrained private ERM, we show that our upper bound is tight. In sharp contrast to the constrained ERM setting, there is no dependence on the dimensionality of the ambient model space ($p$). (Notice that ${\texttt{rank}}\leq \min{n, p}$.) Besides, we obtain an analogous excess population risk bound which depends on ${\texttt{rank}}$ instead of $p$. For the smooth non-convex GLM setting (i.e., where the objective function is non-convex but preserves the GLM structure), we further show that DP-GD attains a dimension-independent convergence of $\tilde O\left(\sqrt{{\texttt{rank}}}/\epsilon n\right)$ to a first-order-stationary-point of the underlying objective. Finally, we show that for convex GLMs, a variant of DP-GD commonly used in practice (which involves clipping the individual gradients) also exhibits the same dimension-independent convergence to the minimum of a well-defined objective. To that end, we provide a structural lemma that characterizes the effect of clipping on the optimization profile of DP-GD.

Citations (47)

Summary

We haven't generated a summary for this paper yet.