Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Saddle-Point Optimization for Wasserstein Barycenters (2006.06763v3)

Published 11 Jun 2020 in math.OC, cs.LG, and stat.ML

Abstract: We consider the population Wasserstein barycenter problem for random probability measures supported on a finite set of points and generated by an online stream of data. This leads to a complicated stochastic optimization problem where the objective is given as an expectation of a function given as a solution to a random optimization problem. We employ the structure of the problem and obtain a convex-concave stochastic saddle-point reformulation of this problem. In the setting when the distribution of random probability measures is discrete, we propose a stochastic optimization algorithm and estimate its complexity. The second result, based on kernel methods, extends the previous one to the arbitrary distribution of random probability measures. Moreover, this new algorithm has a total complexity better than the Stochastic Approximation approach combined with the Sinkhorn algorithm in many cases. We also illustrate our developments by a series of numerical experiments.

Citations (7)

Summary

We haven't generated a summary for this paper yet.