Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Deep Reinforcement Learning for Electric Transmission Voltage Control (2006.06728v2)

Published 11 Jun 2020 in cs.LG, cs.SY, eess.SP, eess.SY, and stat.ML

Abstract: Today, human operators primarily perform voltage control of the electric transmission system. As the complexity of the grid increases, so does its operation, suggesting additional automation could be beneficial. A subset of machine learning known as deep reinforcement learning (DRL) has recently shown promise in performing tasks typically performed by humans. This paper applies DRL to the transmission voltage control problem, presents open-source DRL environments for voltage control, proposes a novel modification to the "deep Q network" (DQN) algorithm, and performs experiments at scale with systems up to 500 buses. The promise of applying DRL to voltage control is demonstrated, though more research is needed to enable DRL-based techniques to consistently outperform conventional methods.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.