Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Zeroth-Order Supervised Policy Improvement (2006.06600v2)

Published 11 Jun 2020 in cs.LG, cs.AI, and stat.ML

Abstract: Policy gradient (PG) algorithms have been widely used in reinforcement learning (RL). However, PG algorithms rely on exploiting the value function being learned with the first-order update locally, which results in limited sample efficiency. In this work, we propose an alternative method called Zeroth-Order Supervised Policy Improvement (ZOSPI). ZOSPI exploits the estimated value function $Q$ globally while preserving the local exploitation of the PG methods based on zeroth-order policy optimization. This learning paradigm follows Q-learning but overcomes the difficulty of efficiently operating argmax in continuous action space. It finds max-valued action within a small number of samples. The policy learning of ZOSPI has two steps: First, it samples actions and evaluates those actions with a learned value estimator, and then it learns to perform the action with the highest value through supervised learning. We further demonstrate such a supervised learning framework can learn multi-modal policies. Experiments show that ZOSPI achieves competitive results on the continuous control benchmarks with a remarkable sample efficiency.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.