Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 138 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Robust Identification of Differential Equations by Numerical Techniques from a Single Set of Noisy Observation (2006.06557v2)

Published 11 Jun 2020 in math.NA and cs.NA

Abstract: We propose robust methods to identify underlying Partial Differential Equation (PDE) from a given set of noisy time dependent data. We assume that the governing equation is a linear combination of a few linear and nonlinear differential terms in a prescribed dictionary. Noisy data make such identification particularly challenging. Our objective is to develop methods which are robust against a high level of noise, and to approximate the underlying noise-free dynamics well. We first introduce a Successively Denoised Differentiation (SDD) scheme to stabilize the amplified noise in numerical differentiation. SDD effectively denoises the given data and the corresponding derivatives. Secondly, we present two algorithms for PDE identification: Subspace pursuit Time evolution error (ST) and Subspace pursuit Cross-validation (SC). Our general strategy is to first find a candidate set using the Subspace Pursuit (SP) greedy algorithm, then choose the best one via time evolution or cross validation. ST uses multi-shooting numerical time evolution and selects the PDE which yields the least evolution error. SC evaluates the cross-validation error in the least squares fitting and picks the PDE that gives the smallest validation error. We present a unified notion of PDE identification error to compare the objectives of related approaches. We present various numerical experiments to validate our methods. Both methods are efficient and robust to noise.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube