Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning Halfspaces with Tsybakov Noise (2006.06467v1)

Published 11 Jun 2020 in cs.LG, cs.DS, math.ST, stat.ML, and stat.TH

Abstract: We study the efficient PAC learnability of halfspaces in the presence of Tsybakov noise. In the Tsybakov noise model, each label is independently flipped with some probability which is controlled by an adversary. This noise model significantly generalizes the Massart noise model, by allowing the flipping probabilities to be arbitrarily close to $1/2$ for a fraction of the samples. Our main result is the first non-trivial PAC learning algorithm for this problem under a broad family of structured distributions -- satisfying certain concentration and (anti-)anti-concentration properties -- including log-concave distributions. Specifically, we given an algorithm that achieves misclassification error $\epsilon$ with respect to the true halfspace, with quasi-polynomial runtime dependence in $1/\epsilin$. The only previous upper bound for this problem -- even for the special case of log-concave distributions -- was doubly exponential in $1/\epsilon$ (and follows via the naive reduction to agnostic learning). Our approach relies on a novel computationally efficient procedure to certify whether a candidate solution is near-optimal, based on semi-definite programming. We use this certificate procedure as a black-box and turn it into an efficient learning algorithm by searching over the space of halfspaces via online convex optimization.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.