Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

CoSDA-ML: Multi-Lingual Code-Switching Data Augmentation for Zero-Shot Cross-Lingual NLP (2006.06402v2)

Published 11 Jun 2020 in cs.CL

Abstract: Multi-lingual contextualized embeddings, such as multilingual-BERT (mBERT), have shown success in a variety of zero-shot cross-lingual tasks. However, these models are limited by having inconsistent contextualized representations of subwords across different languages. Existing work addresses this issue by bilingual projection and fine-tuning technique. We propose a data augmentation framework to generate multi-lingual code-switching data to fine-tune mBERT, which encourages model to align representations from source and multiple target languages once by mixing their context information. Compared with the existing work, our method does not rely on bilingual sentences for training, and requires only one training process for multiple target languages. Experimental results on five tasks with 19 languages show that our method leads to significantly improved performances for all the tasks compared with mBERT.

Citations (146)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.