Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

TS-UCB: Improving on Thompson Sampling With Little to No Additional Computation (2006.06372v2)

Published 11 Jun 2020 in cs.LG and stat.ML

Abstract: Thompson sampling has become a ubiquitous approach to online decision problems with bandit feedback. The key algorithmic task for Thompson sampling is drawing a sample from the posterior of the optimal action. We propose an alternative arm selection rule we dub TS-UCB, that requires negligible additional computational effort but provides significant performance improvements relative to Thompson sampling. At each step, TS-UCB computes a score for each arm using two ingredients: posterior sample(s) and upper confidence bounds. TS-UCB can be used in any setting where these two quantities are available, and it is flexible in the number of posterior samples it takes as input. TS-UCB achieves materially lower regret on a comprehensive suite of synthetic and real-world datasets, including a personalized article recommendation dataset from Yahoo! and a suite of benchmark datasets from a deep bandit suite proposed in Riquelme et al. (2018). Finally, from a theoretical perspective, we establish optimal regret guarantees for TS-UCB for both the K-armed and linear bandit models.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.